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Abstract. We study the effective diffusivity tensor for panicles in a random gradient flow 
tha,  slatistically, lacks rotational symmetry. The effective diffusivity tensor is computed up 
to WO-loop order in penurbation theory and the ‘Ward identity’ that relates this tensor to the 
effective coupling is verified ta the same order. 

We re-examine the renormalization group calculation lhat produced a very accurate 
numerical value for the effective diffusivity in the rotationally symmetric case and formulate 
two versions based on distinct divisions of the random potential field lhat gives rise CO the 
flow. Both typs of renormalization group calculation give good results when compared with 
numerical simulations. However, al two-loop order in pemubation theory the MO methods differ 
in detail from each other and horn the exact penurbation calculation. This is in contrnsr to the 
corresponding results in the isotropic case. 

1. Introduction 

Recently, work on the problem of advective diffusion of scalar fields in random velocity 
fields [4-6,9] has mived at some interesting and apparently exact results in the case of 
gradient flow that is statistically rotationally invariant (as well as translation invariant). This 
work complements that on anomalous diffusion reviewed in [I]. 

In this paper we extend some of these results to the case of gradient Row for which 
the assumption of statistical isotropy does not hold. This study is not only interesting in 
its own right but also provides a wider context in which to view the previously successful 
calculations. We analyse the difficulties and discrepancies that enter in the new, physically 
more complex, situation. 

2. Gmen functions 

.~ The equation for the (conjugate) Green function in a velocity field U(I) = hoVq5(1) is 

(1) 

After averaging over the random ensemble of flows we obtain an effective Green function 

(KOV 2 - &Vq5(1). V)G(z, 1’) = -S(Z - I’) . 

1 
4 a J d e t ~ ( ~ - ’ ) i j ( e  - Z’)j(Z - Z’)j 

B(I - 0’) = (G(z, d)) - for 11 --dI -+,a 
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where ~ i j  is the effective diffusivit)i tensor that controls the long-range dispersal of the 
scalar field. The Fourier transform of G(z - z’) is 

D S Dean et al 

c ( k )  = [KO!? - Z(k)I-’ .  (3) 

C(k) - cTijkikj (4) 

(5) 

At small k the irreducible two-point function X(k) satisfies 

with the result that the effective long-range diffusivity is 
K . .  

11 - I ‘I ‘ 

For the purposes of simulation we assumed that the scalar field correlator A ( z  - z’) E 

(@(s)@(z’)) has the form 

with 
D(q) = (%)3/2 (detA)’/Z ~ -~~AMI/Z ,  

((@(m = 1. 

(7) 

(8) 
In our simulations we chose the symmetric matrix A to be diagonal in the coordinate basis. 

The normalization is chosen so that 
~. 

3. Graphical rules for perturbation theory 

The Feynman rules for the diagrammatic perturbation expansion are essentially the same as 
in the isotropic case. We have 

(i) The sum of the inwardly flowing wavevectors at each vertex is zero. 
(ii) Each full line carries a factor~of l /K&.  

(iii) Each loop wavevector q is integrated with a factor d3q/(2r)3. 
(iv) Each vertex of the form of figure 1 canies a factor A0 ( I C  + q) . q. 
(v) Each broken line carries a factor D(q) .  

I 

I 
k k+q Figure 1. Vertex diagram. 

4. One-loop contributions 

The calculation for the one-loop contribution to Z ( k )  is also much the same as the isotropic 
case except that we only make use of the symmetry D (-q) = D (q) in manipulating the 
integrand. The one-loop contribution to C ( k )  is associated with the diagram in figure 2. 
From the above rules we have 
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a 
. c - - - f - -  ~ 

i' . 
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I \ 

k+q Figure 2. One-loop conrribution to E. 

Using the same manipulations as in [5] we find to O(k2) the result 

This can be expressed as 

where 

The one-loop calculation for the diffusivity tensor is then 

It is of interest to note that the trace x;i is identical with the result for the isotropic case, 
namely 

where we have used the obvious result 

5. 'ho-loop contributions 

The two-loop contributions to X ( k )  are associated with figures 3(a) and (b). With minor 
changes they can also be manipulated in much the same way as for the isotropic case. We 
omit the details of these calculations. From the two-loop O(k2) contribution to Z ( k )  we 
obtain to this order the result for the effective diffusivity tensor 

where 
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5 
Figure 5. Tr(K) versus Tr exp (-Ago) 

An important feature of the above calculation is that the trace uii = 0. Note that, as 
expected, vij vanishes in the isotropic case. It therefore follows that 
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This suggests the result 

It is of course consistent with the result for the isotropic case. A comparison of this 
prediction with the results of the simulation for various parameters is shown in figures 4 
and 5. 

6. ‘Ward’ identity 

As explained in [5] the complete vertex function of the theory has the form 

V ( %  k’) = q i w ,  k’) (20) 
where 

Vj(q, k’) = wij(q, k’)k;. . 

However, we no longer have rotational invariance for the system. It follows that we cannot 
expect Wij(O. 0) cx 6 i j .  In general, we mnst allow for the presence of a tensor coupling Aij 
at low momentum, thus I . 

Vj(0, k )  = Aijkj (27.) 
as k + 0. This corresponds to an effective coupling, induced by the averaging procedure 
over the fluctuating field, of the form 

- - h i j a i @ d ” ) a j  

that appears in the equation for the effective Green function in the presence of a background 
field @ B ( z ) .  

In the isotropic case we were able to prove to two-loop order the ‘Ward’ identity 

(23) 
a -W) = - ~ ( K O / A O ) [ W O ,  k )  - Aokil + U;@) 

ak, 
where 

. ~ Uj(k) - O(kz)ki 

as k + 0. The method of proof apparently relied on the isotropy of D(q) .  However, 
a careful examination of the terms in the expansion shows that reflection symmetry is 
sufficient and the result remains me in the present non-isotropic case. The calculations are 
along the same lines as those in [5] and we omit the details. 

The Ward identity (equation (23)) can be more conveniently wriien as 

(2-5) 
a 

-[G(k)I-’ = Z ( K O / A O ) W O ,  k)  - Ui(k). a ki 

Taking account of the low-momentum behaviour of &k) rr kikjKij  we see that the Ward 
identity implies that 

K i j  = (~o/Ao)Aij. (26) 
In other words the Ward identity implies that the effective coupling tensor hij is proportional 
to the effective diffusivity tensor. This is a somewhat remarkable result in view of the 
intrinsically non-isotropic contribution, ui j ,  to the effective diffusivity tensor. 

It is important for the truth of the Ward identity and the proportionality property that the 
breakdown of isotropy is due entirely to the statistics of the fluctuating field @(z). If there 
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were further removal of isotropy due to the presence of a tensorial diffusion constant at the 
molecular level then any resulting Ward identity would have a more complicated structure 
and the implications for the effective tensors would be correspondingly less straightforward. 

D S Dean er a1 

7. Renormalization group calculation 

Armed with the equality ~ ; j  = ( ~ o / A o ) A ; j  that must hold between the running values of the 
diffusivity tensor and the coupling tensor it is a simple matter to formulate a generalization 
of the renormalization group argument that proved successful in calculating the effective 
diffusivity in the isotropic case. 

The basis of the renormalization group method is the division of the Gaussian process 
giving rise to the field @(z) into infinitesimal elements based on the magnitude of the 
associated wavenumber A. The running value of the effective diffusivity is that associated 
with the effect of all the fluctuations of $(z) with wavenumbers above A. We will 
investigate this 'momentum' slicing method here. 

We point out, however, that other methods of division are also possible. For example, 
it is perfectly valid to divide $(z) into a set of independent Gaussian processes based on 
some arbitrary parameter, t say, with the range 0 < f < 1. We can write 

1 

4W) = 1 dt@&) (27) 

where 

(@t(z)@,r(d)) = S(t - ?')&(a: - z'). (28) 

We then introduce running parameters that depend on I, ~ ; j ( t )  and A ; j ( t ) ,  and require that 
~ ~ ~ ( 0 )  = ~ 0 6 ; j  and A;j(O) = A0sj j .  In the isotropic case we can use either division to obtain 
the same result In the non-isotropic case that we discuss here, the latter division of #(z) 
has the advantage of being a little simpler than the momentum slicing metnod. 

The basis for the renormalization group calculation is the change in C ( k )  that results 
from a change in the correlation function D(q).  This is calculated from the diagram 
in figure 1 with an appropriate reinterpretation of the lines and vertices. The broken 
line now corresponds to 6 D ( q ) ,  the vertices now involve the running coupling tensor 
A;j = (Ao/Ko)K:~ where we have suppressed the dependence on the running parameter. 
The full line corresponds to the the effective propagator which has the form 

1 

(4 + k ) m K m n ( g  + IC), ' 

The result is that the change in (IC) is 

In the above integrand the diffusivity tensor ~ i j  replaces 6jj  in the standard one-loop integral. 
This makes it possible to repeat the standard manipulation employed above and write 

qrKrm(4  k ) m  = (4 k) ;K im(Q -!- k ) m  - krKrm(q -!- k)m . (30) 
We then have 
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The first term vanishes because of the symmetry of 6D(q)  under reflections in q with the 
result 

In the momentum (or wavenumber) slicing version of the renormaliiation group 
calculation 

SD(q)  = 6A6(A - q ) D ( q )  . (33) 

The current value of the diffusivity tensor is influenced by effects at wavenumbers greater 
than A so the effect of the new slice 6 D ( q )  is to make the shift A + A - 6h. In these 
circumstances 

dK. 
6Z(k)  = + S A l k i k j  

dA 
for small k. As a result we have 

(34) 

The renormalization group prediction for the effective diffusivity is ~ i j ( A  = 0), obtained by 
integrating this differential equation and imposing the boundary condition K ~ , ( A  = 00) = 

For the purposes of later comparison we give also the renormalization group equation 

(36) 

Because the addition of the extra slice takes us from t + t + St we have after sorting out 
the overall sign 

. 
K o 6 i j .  

based on the above alternative slicing procedure for which 

SD(p) = 6t D(q)  . 

The prediction for the effective diffusivity tensor is Kij(t = I), obtained by integrating (37) 
with the boundary condition q ( t  = 0) = K&. In contrast to the situation in the isotropic 
case, the two predictions are not identical. We discuss the comparison between them and 
the results of a numerical simulation below. 

In the above renormalization group calculation we have used the Ward identity instead 
of following the flow of the coupling tensor Ai,, if instead one had explicitly carried out 
the tensorial vertex renormalization in the fashion of [4] one would have arrived at exactly 
the same renormalization group flow for ~ i j  in the case where ~ o i j  c( Aoij .  Hence the use 
of the Ward identity within the renormalization group calculation is entirely consistent. 

8. Perturbative analysis of renormalization calculations 

Equation (35) can be integratedperturbatively in powers of A;/K:.’ We set 

(38) 

(39) 

K.. - (1) (2) - K:) + Ki j  -k K; j  f 9 ’ 

where 

K!?’ U = Ko&j . 
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We find 
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That is 

On setting A = 0, we see that this result is identical with the perturbative one-loop result 
of (13). We now use this approximation to compute to the next order and obtain 

On using (41) this equation can be integrated to give for the effective diffusivity 

By dividing up these contributions and interchanging the dummy integration variables 
appropriately this result can be reorganized into the form 

where 

Note that 

xii = 0 .  (46) 

This result should be compared with that for uij in (17). It is clear that although somewhat 
similar in structure xij  # uij .  The differences are the presence of the 0 ( p  - q )  factor and 
the replacement of the denominator factor (p + 4)' by p2. 

The t-slicing method described above produces similar results except that the 0 ( p  - q)  
factor is missing in the formula for x i j .  Both renormalization group methods produce 
slightly different results at the two-loop level and both are different from the correct two-loop 
perturbation theory result. It must therefore be concluded that although the renormalization 
group method produces correct results to high order in the isotropic case, this is to a certain 
extent 'accidental'. It reflects the fact that the renormalization group method, based on 
any slicing procedure, only and inevitably computes iterations of one-loop contributions. 
The asymmetric case shows already in two-loop order that some multi-loop effects do not 
always factorize into singleloop ones. 
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9. Full renormalization group calculations 

As opposed to the case where one has rotational invariance, the renormalization group 
equations for non-rotationally symmetric flows are much more difficult to integrate. The 
spatial structure of the correlation function becomes important and the corresponding 
equations require numerical integration. However, despite this, one simple result 
independent of the precise nature of the spatial correlation does remain. In both slicing 
techniques it is easy to show that 

Trlog(K,) = -- -‘r 3lOg(Ko). (47) 

One may verify that, unlike the results for the individual components of the diffusion tensor, 
this result is entirely consistent with the results obtained from the two-loop perturbation 
theory. In the t-slicing method there is even a corresponding simple result for the running 
value of K(t), 

KO2 

hit 

Ko2 
Trlog(K(t)) = -- + 310g(K0). (48) 

In this section we shall consider the two renormalization group techniques in the case 
where one has a matrix A of the form 

A = O a ! O .  (49) 

Symmetry considerations imply that the form of the running diffusion tensor will therefore 
be given by 

(: : ,”, 
(; : 10 K = O K O .  (50) 

The variables above being functions o f t  or A depending on the slicing method. 

9.1. The t-slicing renormalization group 

In what follows we shall set KO = 1. The renormalization group equations can be reduced 
to the following: 

where 

K‘(f) = K-2eXp(-Ait). (52) 
It is convenient to define the renormalization group flow in terms of the rescaled variables 
p(t) =@)/a! and p’(t) = K’(t)/@. After some algebra the corresponding renormalization 
group equations can be shown to reduce to 

with 
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and the function G defined by 
1 + -log 1 (e) 

G ( a )  
2 2 ( 1  -a2)  4 a 3  1 + a  (55) 

and its appropriate analytic continuation. The boundary condition is simply given by 
p(0) = l/u. The integration of this equation is now a relatively simple numerical task. 

9.2. The momentum space renormalization group 

By resorting to spherical polar coordinates within the integrands, the momentum slicing 
renormalization group, the renormalization group equations may be reduced to the following 
before resorting to numerical solution: 

U 2  
1 

-=- 'I' ol@'/2KaA'exp(-faAZ) /" duexp(-f(p - a)u2A2) 
d K  

dA (2z)Il' 0 K ( l  - U') f K'U' 

(57) 
For the purposes of numerical solution an upper cut-off for A is chosen so that the value 
of the right-hand sides of the above equations is zero within the numerical precision and 
the equations are integrated downward to A = 0. 

10. Comparison with numerical simulation 

The simulation procedure used in this paper is the same as that used in [4] which was based 
on the methods developed in 18.71. 

We shall begin the discussion of the efficacy of our various approximation schemes with 
a comparison of the measured value of Tr(lOg(K)). The results of the numerical simulations 
for this quantity in the cases A = diag(1, 1,4) and A = diag(1, 1, 4) are shown in figures 6 
and 7 ,  respectively, with the corresponding renormalization group predictions (which are 
the same for both methods and choices of A) .  The results show a very close agreement with 
the renormalization group predictions (comparable with the accuracy of the renormalization 

-3.0 
0.0 0.5 1.0 

?. 
; Figure 6. TI (lOg(K)) versus renormalization 

group prediction for me case A = diag(l.l.4). 
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5 

Figure 7. Tr(log(r)) venus renormaliza- 
tion group prediction for the case A = 
diag(l,1,1/4). 

Figure 8. K venus reno!'malization group 
predictions for the case A = diag(1, 1,4), (f- 
slicing, full lines; momentum slicing. broken). 

group calculations for the isotropic case examined in [4]. This agreement between the 
renormalization group predictions with the simulation and with two-loop perturbation theory 
leads one to speculate that (47) may be an exact result. 

The results of the simulations for the individual components, K, and 4, are shown 
in figures 8-11, For large values of ho we see that there is a departure between the both 
renormalization group techniques and the measured values. This is, of course, to be expected 
as we know that neither renormalization group technique agrees with the two-loop result. 
However, both techniques perform reasonably well, the momentum slicing method perhaps 
slightly better than the t-slicing one. 

The inequalities in the values of K~ and K: can be simply understood from a physical 
point of view. The directions with the larger correlation length for the field 6 can be 
regarded as smoother in that direction than those with the shorter correlation length and 
hence the diffusion constant is greater in these directions (i.e. the particle see a landscape 
which is relatively constant in directions with the greater correlation length but contains 
trapping maxima in the p lanehe  corresponding to the shorter correlation length). An 
extreme situation would be where p + CO as CY remains finite. In this case the correlation 
length in~the-z-direction has become infinite and hence even on very long time scales the 
field can be thought of as independent of 2. The diffusion in the ( x ,  y)-plane should become 
effectively two dimensional. Following this line of reasoning one should have that K: = 1 
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I 
05 1.0 1.5 

I 

05 1 a 
I 

Figure 9. K versus renomalization group 
predictions for the case A = diag(l. 1. 1/4), (r- 
slicing, full lines; momentum slicing, broken). 

Figure 10. K' versus renormalization group 
predictions for the case A = diag(1. 1.4). (r- 
slicing, full lines; momentum slicing, broken). 

i 

A 
0200 0.5 1.0 1.5 

1 

Figure 11. K' versus renormalization group 
predictions for the case A = diag(l,l,l/4), (t- 
slicing, full lines; momentum slicing, broken). 

and K= = exp(-hi/2) (if one believes the renormalization group calculation for the two- 
dimensional isotropic problem [4]). Putting this together implies the result Trlog(K) = -hi, 
and hence there is an added consistency between (47) and the isotropic theory. Of course 
this argument is much more general and works in any number of dimensions, taking any 
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subset of the correlation lengths to infinity whilst leaving the remaining conelation lengths 
all finite and equal. 

One should also add that within the context of the above argument equation (19) is also 
entirely consistent. Clearly in the non-isotropic case (19) and (47) cannot be simultaneously 
true, in general. The fact that they are in agreement to O(Ai) means that only at quite high 
values of A0 could one see which is the more accurate. n this is-clearly a point that merits 
further investigation, but as was mentioned in [SI the simulation of these systems at high 
disorder presents technical difficulties in the measurements of the effective diffusion tensor. 

11. Conclusions 

In this paper we have examined methods for the evaluation of the effective diffusivity 
tensor for Brownian particles in a random gradient flow lacking rotational symmetry. In 
contlast with the isotropic version of the problem examined in [ G I ,  the resulting effective 
diffusion tensor depends explicitly on the nature of the spatial correlations of the Gaussian 
field (whereas before it just depended on the single-point variance). Moreover, in the case 
where the bare diffusion tensor and coupling constants are proportional to the identity, a 
perturbative analysis and a renormalization group analysis implies the proportionality of the 
effective diffusion tensor and the dressed coupling tensor, extending the Ward identity of 
[5] to a more general context. 

The perturbation theory was developed to two-loops and then compared with two 
renormalization group methods. One method consisted of dividing the random field up 
as the sdintegral  of infinitesimally small independent random fields and the other was 
based on the traditional momentum slicing method. In contrast with the isotropic case these 
two methods yield different results, nor do they a p e  with the two-loop perturbation theory 
result; hence they cannot be exact. 

However, overall the agreement with numerical simulation is quite good. Furthermore 
both second order perturbation theory and both renormalization group methods are in 
agreement for the calculation of the object Tr (log(K)) which is predicted to be -A:/K~ + 
3 log(K0). This is once again an object which is independent of the precise form of the 
correlation function for the random field (J and the agreement with the numerical simulations 
is very good. 
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